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Wigner quantisation of arrival time and oscillator phase 

Reinhard F Werner? 
Fachbereich Physik, Universitat Osnabriick, Postfach 4469, D-4500 Osnabriick, Federal 
Republic of Germany 

Received 28 March 1988 

Abstract. By means of the Wigner distribution function an expression is derived for the 
quasiprobability that a free particle in one dimension arrives at the origin during a given 
time interval and also for the quasiprobability that the phase of a one-dimensional harmonic 
oscillator lies in a given segment of the circle. It is shown that the best bounds on these 
quasiprobabilities p are -0.1559CpC 1.0077, independent of the size of the interval. It is 
shown that on disjoint unions of infinitely many intervals the quasiprobabilities may add 
up to any positive or negative real value. It  is briefly indicated how negative probabilities 
can be avoided altogether in an alternative approach to the quantisation of arrival time 
and oscillator phase. 

1. Introduction 

In a classic paper [ 11 Wigner showed how to construct for each state of a non-relativistic 
quantum system a function on the phase space of the corresponding classical system, 
which could be interpreted-with caution-as a probability density. Formally, Wigner’s 
method allows the calculation of expectation values for any classical observable given 
as a function on phase space. It is one of the basic properties of Wigner functions 
that the integral of this function over a strip in phase space of the form { ( p ,  q)lq E I} 
(I a subset of configuration space) coincides with the quantum theoretical probability 
for the system to be in the set I, calculated with the standard position observable. 
Similarly, the marginals of Wigner’s probability distribution with respect to q coincide 
with the standard momentum observable. Thus the Wigner function formally provides 
a joint probability for position and momentum, which is bilinear in the wavefunction 
(as any quantum theoretical expectation value should be). Hence it is clear from the 
uncertainty relations that there has to be a drawback in this scheme. The trouble is 
that the Wigner function is not necessarily positive, so the ‘probability’ for ( p ,  q )  to 
be in some subset of phase space may turn out to be negative. In fact, one may show 
by simple examples that the Wigner function need not even be integrable, so that an 
infinite negative probability and an infinite positive probability cancel formally to give 
the value one for the total probability. This is the reason for calling the Wigner function 
a ‘quasiprobability density’. 

In spite of this occurrence of negative probabilities the Wigner function has proved 
to be a useful tool in many applications (see [2] for some recent examples and further 
references). From the beginning [ l ]  an important application has been the study of 
the semiclassical ( h  + 0) asymptotics of quantum mechanics [3]. Since a truncated 
asymptotic expansion of a positive quantity need not be positive, the non-positivity 
of the Wigner function presents no difficulties in this context. Another area of successful 
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applications has been the study of pseudodiff erential operators [4], where positivity 
plays a subordinate role. However, it is a different matter whether the Wigner function 
provides sensible idealised descriptions of real measuring devices. In this case it is 
reasonable either to demand an explanation why the quantum states prepared in a 
laboratory happen to be among those giving positive results, or else to use another 
theoretical approach giving positive probabilities for all states (see § 5). 

In this paper we consider quasiprobabilities calculated from the Wigner function 
by integrating over a sector in phase space (for one degree of freedom). These quantities 
have two different simple classical interpretations. On the one hand, t = - m q / p  is the 
time at which a free particle of mass m with initial momentum and position ( p ,  q )  will 
reach (or has reached) the origin q = 0. Clearly, the lines t =constant are straight lines 
through the origin and hence the subset of phase space corresponding to t ,  s t s t2 
and a definite sign of momentum will be a sector with the tip at the origin. On the 
other hand, a sector corresponds to an interval a l  s a s a2 of the polar angle a in 
phase space, i.e. the phase of an oscillator with Hamiltonian H = f ( p 2 + q 2 ) .  The 
integrals over sectors have properties between those of integrals over strips on the one 
hand (where the Wigner function gives sensible results, but yields nothing new beyond 
the predictions made by the standard observables) and integrals over arbitrary measur- 
able sets on the other hand (where the Wigner function often gives absurd results). 

After introducing the necessary notation and listing some basic properties and 
formulae for the Wigner function in 0 2 ,  it will be applied to arrival times and oscillator 
phases in $ 3. In 0 4 we will show that the integral over a sector is equal to the 
expectation value of an operator, which is not positive (so that the catastrophe of 
negative probabilities does happen in this case) but bounded (so that the catastrophe 
is in one sense mild) and we will explicitly diagonalise all such operators. We will 
also show that integrals over unions of sectors may still range from -CO to +CO, so in 
general the quasiprobability distributions obtained by this method for arrival time and 
oscillator phase may be quite useless. In 5 5 we briefly indicate how these difficulties 
may be avoided from the outset by a different approach to the quantisation of classical 
observables. This approach depends on further details of the system. In particular, 
the positive operators corresponding to a sector in phase space are now different in 
the cases of arrival time and oscillator phase. 

2. The Wigner function 

For simplicity we shall consider only systems with one degree of freedom. Let D be 
a density matrix describing a possibly mixed quantum state, i.e. an operator D a O  
with Tr D = 1. Such an operator is given by an integral kernel D( e ,  a ) :  R2+ C in 
momentum space. If D = Z, A,I$,)($,/ with A ,  3 0 and Z, A ,  II& / I 2  = 1 is a decomposition 
of D into pure states, then this kernel equals D( p l ,  p 2 )  = Z, A,$, ( pI)$!( p 2 ) .  In terms 
of this kernel the Wigner function p ( D ;  .;) is defined as 

p ( D ; p ,  q ) =  dp’e-’P4D(p+4p’,p-4p’).  (1) i 
Here we have chosen the normalisation ( 2 ~ ) - ’  5 dp d q p ( D ;  p ,  q )  = Tr D. An alternative 
definition of p is [5] 

p ( D ;  P, 4 )  = 2 Tr(DW(p, s)n. W(P, S I * )  ( 2 )  
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where (II+)( p )  = + ( - p )  is the parity operator and W ( p ,  q )  the Weyl operator 

( W P ,  4 ) + ) ( P ' )  = exP(;ipq --ip'q)+(p'-p). ( 3 )  

The operators W (  p ,  q )  are unitary and are determined up to unitary equivalence and 
multiplicities [ 6 ]  by the Weyl relation 

W(P1 9 SI) W P 2 ,  q2) = exp[Si(p1q2 - qlP2)I W(P1 + P 2 ,  91 + 92). ( 4 )  

The bracket in the exponent, considered as a bilinear form in the two vectors ( p l ,  q , ) ,  
is called the symplectic form and is to be considered as a fundamental geometric 
feature of phase space. 

The expression ( 2 )  shows that p is everywhere bounded by 2 ,  which agrees with 
the intuition that the phase space probability density of a quantum state cannot have 
high peaks. Since W ( p ,  q)II W ( p ,  q)" = W(2p, 2q)II, the quantum version of the 
Riemann-Lebesgue lemma [ 7 ,  proposition 3.4(6)] implies that p is always continuous 
and goes to zero at infinity. Moreover, since D is a Hilbert-Schmidt operator, p ( D ;  e ,  a )  

is a square integrable function on phase space [7 ,  proposition 3.4.(4)] .  We say that a 
density matrix D is tempered if all partial derivatives of D ( p ,  , p 2 )  fall off faster than 
any power at infinity. In this case the Wigner function, being a partial Fourier transform 
of D with respect to the difference variable, has the same property. In particular, 
p ( D ;  e ,  e )  is integrable for tempered density matrices. However, the Wigner function 
may fail to be integrable, as the example D = /+)(+I with + ( p )  = 1 for JpI < 1 and 
i,b( p )  = 0 otherwise shows. For further topological properties of Wigner functions and 
the associated Wigner- Weyl correspondence between tempered distributions on phase 
space and quadratic forms in Hilbert space the reader is referred to [ 8 , 9 ] .  

When D = I+)(+I is a pure state, p is positive if and only if + is a complex Gaussian 
[lo, 111. It is an open problem to give a characterisation of mixed states D with 
positive Wigner functions. A remarkable property of Wigner functions, which is best 
understood in terms of the calculus developed in [ 7 ] ,  is that the convolution of two 
Wigner functions is positive and integrable. Thus, in a sense, the non-negativity of 
Wigner functions is a phenomenon peculiar to small regions in phase space (compared 
to the limits set by the Heisenberg inequality), which is washed out if the function is 
averaged with a Gaussian of sufficiently large spread. 

An important property of the Wigner correspondence is its covariance with respect 
to the group G of affine symplectic transformations: it is clear from ( 2 )  that a 
phase-space translation D e  W ( p ,  q)DW(p ,  4)" of a state D becomes a shift 
p (  p ' ,  q')  H p ( p '  - p ,  q' - q )  of Wigner functions. A similar property holds for linear 
maps U : R2 + R2 preserving the symplectic form. For such maps the operators k( p ,  q )  = 
W ( a ( p ,  q ) )  again satisfy the Weyl relations. Hence von Neumann's uniqueness 
theorem [ 6 ]  implies the existence of a unitary operator U, (unique up to a phase) 
satisfying U, W (  p ,  q )  U $  = W (  a( p ,  4)). Obviously, the operators U, form a representa- 
tion up to a factor of the group of symplectic linear transformations. Together with 
the Weyl operators representing the translations we thus have a representation of the 
affine symplectic group G, which is sometimes called the metaplectic representation. 
Classically as well as quantum mechanically the generators of one-parameter subgroups 
of G are precisely the Hamiltonians which are at most quadratic in position and 
momentum. Since the parity operator II commutes with U,, equation ( 2 )  implies the 
covariance property 

P( U,DUz; p ,  q )  = p ( D ;  a - ' ( p ,  (1)). ( 5 )  
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Special one-parameter subgroups of G needed later are the free time evolution U, = 
exp(itP2/2m) corresponding to the maps ( p ,  q ) H ( p ,  q + p t / m ) ,  the time evolution of 
the oscillator U, = exp[iaj( P 2 +  Q 2 ) ]  corresponding to ( p ,  q )  H ( p  cos a + q sin a, 
- p  sin a + q cos a ) ,  and the dilatation group U, = exp[ihf( PQ + Q P ) ]  corresponding 
to (P, q)-(e”, e-^q). 

3. Quantisation of arrival time and oscillator phase 

Now let f: R + R represent some function of the classical arrival time t = - q / p ,  i.e. the 
time determined from the equation q + p t  = 0. (From now on we choose units so that 
the mass m of the particle is m = 1.) We are interested in the expectation values of 
all these functions, i.e. in 

(2rI- l  J- dp d q f (  - q / p ) p ( D ;  p ,  4 )  

= (2r ) - ’  dp dq dp’f(-q/p)  exp(-iqp’)D(p+4p’, p -tp’) I 
I = ( 2 r ) - ‘  dp dp’dtlplf(t) exp(itpp‘)D(p+tp’,p-ip’) 

Thus 

represents the quasiprobability density for arrival at the origin at time t. The exponential 
factor in this integral expresses the covariance of this density with respect to the free 
time evolution: we have p r ( D ;  t )  = p r (  UTDU, ; 0) where U, denote the unitary time 
evolution operators. The density p T ( D ;  0) is determined by the kernel p , ,  p2*tlpI + p 2 ( .  
This kernel is not positive definite, so it is clear that pr may become negative for 
suitable D. 

It is interesting to consider the special case of density matrices which are supported 
by the quadrant p ,  L 0, p 2  L 0. Thus all particles in the ensemble described by D ‘travel 
to the right’. In this case the absolute value in (6) may be omitted. If D = I$,)($[ is a 
pure state with $ ( p )  = 0 for p S 0, and 

” 
&(x)  = ( 2 ~ ) - ’ ’ ~  dp exp(ipx -$tp2)$(p) J 

denotes the wavefunction in position space at time t, then 
I* 1 / A  

P T ( Q  t )  = (1/2iK$t(O)+KO) - $ K O ) + t ( O ) )  (7) 
coincides with the usual probability current at position x = 0, where the prime denptes 
the derivative. Integrating this over time and observing that for t +  --CO +, is 
concentrated on the negative half-axis [ 121 we obtain 

f t  
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This formula has the classical interpretation that among particles travelling to the right 
those arriving at x = 0 before t are the same as those located in the positive half-axis 
at time t. The Wigner quantisation of arrival time is in accordance with this intuition. 
What is paradoxical, however, is that p T  may be negative even if $ contains only 
positive momenta. Hence there may be a net flow of probability from the positive to 
the negative axis in position space. In the next section we shall compute a uniform 
bound on the size of the integrated floy over any time interval, and we shall show 
that the absolute variation of t - J r  dxl$,(x)I* may be infinite. 

We now turn to the derivation of an expression for the quasiprobability density 
p @ ( D ;  a )  for the oscillator phase a. The covariance of the density p T  with respect to 
the free-particle time evolution was manifest in (6), because the evolution operators 
act by multiplication in momentum space. Similarly, we have the following formula 
for the density p@ in terms of the eigenbasis 1 n ) ,  n E N, of the Hamiltonian +( P 2  + Q2) .  

Lemma 1. Let D be the density matrix with Wigner function p ( D ;  e ,  a ) .  Then 

(2r l - I  J r d r  d a  f ( a ) p ( D ;  r cos a, r sin a )  = ( 2 r ) - '  da f ( a )p@(D;  a )  

with 

J 
PQ(D; a)= nnm(mIDln)ex~[i(m-n)aI  

n, m 

and 

( 9 )  

Sketch of proof: The easiest way to obtain the coefficients a,,, is to use the non- 
normalised coherent vectors C( U )  = Z, U"( n ! ) - ' ' 2 1  n )  ( U E C) as a generating function. 
These vectors satisfy the relations (C(  U), C (  v) )  = exp( nu) and W (  p ,  q)C( U )  = 
exp[- t (u+fz) ]C(u+z)  with z =  (1/J2)(q+ip) .  Hence with formula (2) we obtain 
for coherent dyads D = IC( U))( C( v)l the Wigner function 

p(I  C( U))( C (  U)/; p, q )  = 2 exp( -2/212 + 2c.2 + 2 t u  + CU). 
Inserting this into the ?&st equation of the lemma and carrying out the radial integration 
we get with r e-'" = J 2 z  and 5 = iij e-'" - i e%: 

2 n n m u m C f l ( n ! m ! ) - 1 ' 2 e x p [ i ( m - n ) a ] = e - ~ u  2rdrexp(-r2+&Cr) 
nm J 
The integral is equal to r(4n + 1). Expanding the binomial 5" and comparing coefficients 
of 0" and u m  we find (10) and the lemma is proved. 

From the a dependence of (9) it is immediately clear that p o ( D ;  a )  = pQ( U:DU,, 0), 
where U, now denotes the time evolution operators for the oscillator Hamiltonian. 
Setting n = m in (10) we obtain On, = 1, so that ( 2 r ) - ' J  d a  p @ ( D ;  a )  =Z, , (nJDIn)= 
Tr D as required of a probability density. The positivity properties of pQ now hinge 
on the positive definiteness of the matrix Cl and will be considered below. 
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4. Negative probabilities 

By a pointed sector in phase space we mean a convex set bounded by two non-parallel 
straight lines extending to infinity. An example is S = {( p ,  q)1 t l  s -( q / p )  G tZ ;  p 3 0}, 
i.e. the set of classical states describing particles which travel to the right and reach 
the origin between the times t l  and f 2 .  By a double sector we mean the union of two 
'opposite' sectors with the same tip and the same bounding straight lines, like S'= 
{ ( p ,  q)lt l  S - ( q / p )  S t2}. If we can calculate the integral of all Wigner functions over 
a given sector S, then we can calculate such integrals for all sectors obtained from S 
by affine symplectic transformations by using the basic covariance property (5). It is 
easy to see any two pointed (respectively double) sectors are connected by an affine 
symplectic transformation. The following proposition makes use of the fact that for 
every sector S there is an essentially unique one-parameter group of affine symplectic 
transformations leaving S invariant. If the tip of S is the origin, the generator of this 
group is given by a matrix with zero trace, whose eigenvectors point along the sides 
of s. 
Proposition 2. Let S C R2 be a pointed or double sector in phase space. Then there is 
a unique bounded Hermitian operator As such that for any tempered density matrix 

W-I  J dp dqp(D;  p ,  4 )  = WDAS). 
(p ,  9 ) E S  

Moreover, the spectrum of A,  is purely absolutely continuous. For pointed sectors 
the spectrum is equal to the union of the intervals [-s-, 01 with multiplicity 2 and 
[0, s+] with multiplicity 1. For double sectors the spectrum is an interval of the form 
[-s, 1 + s] with multiplicity 2. 

The constants are s- = 0.155 940, s+ = 1.007 678 and s = 1.236 824. 

Proof: By the above remarks it suffices to consider one particular sector of each kind. 
As the prototype of a pointed sector we shall take S = { ( p ,  q ) l p  2 0 , q a O ) .  The 
one-parameter group leaving this sector invariant is the group of transformations 
( p ,  q )  H (e*p, e-"q). The idea of the proof is to diagonalise the operators As together 
with the unitarities representing this group. 

We begin by calculating the expectation I "  of F, (p ,  q )  = O ( p ) O ( q )  e-Ep9 with 
respect to the Wigner function of a pure state D = l+)(+l, where O denotes the unit 
step function with O(x) = 1 for x 3 0 and O(x) = 0 otherwise. In the limit E + 0 Fe 
becomes the characteristic function of the sector S and for tempered functions + the 
limit limc+o I "  exists and is equal to ( 2 ~ ) - '  j ( p ,  9 ) t S  dp dq p ( D ;  p ,  q )  by dominated 
convergence. Then 

I ' =  (257-' dp dq O ( p ) O ( q )  e-fp4 dp'e-iP'4$(p+' 2p )9(P -1P') I I 
= (2T) r1  J dp, dp2 @(PI +P2)G(PI)+(PZ) 

x Iom dq exp[-i(pI - ~ 2 h  - : E ( P I + P ~ ) ~ ~  
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This integral is the sum of the four integrals Z'(a,, a2) over quadrants distinguished 
by a, = sgn(pl) = *l .  In each of these integral we shall substitute p ,  = v, e2'i, obtaining 

IE (a l ,  a2) = (2%--l I-, dAl 

with 

+'x +'x 

dh2 f i  e"l$(al e2"l) f i  eA2+(u2 e2"2)K~,rg2(Al - A 2 )  
-cc 

2@( a, eA + v2 e-") 
;&(a, eA+a2e- ' )+i(cr ,  eA-a2e- ')) '  K:l,u2(A) = 

Thus 

K:+(A)=2(& cosh(A)+2i sinh(A))-' K;- (A)  = ~ @ ( A ) ( E  sinh(A)+2i cosh(h))-' 

K'+(A) = K:-(-A) K"(A) = O .  

Since I "  ( a , ,  a2) is the expectation of a convolution kernel, we pass to the Fourier 
transforms 

$,(7) := ( 2 ~ ) - " ~  dh elAq& e'+(a e2') 5 
J k:,,u2(v):= ( 2 ~ ) - '  dh  e'AqK:,,u2(A) 

so that 
+'x 

I f =  c IE (a l ,  a2)={-x d 7  c $ u , ( r ] ) ~ ~ l , u * ( 7 ) ~ ~ 2 ( 7 ) .  
VI I U2 S I  3 U 2  

Since the functions KZ, ,  ,* fall off exponentially as A -+ +a, their Fourier transforms 
are bounded. Moreover, the transform of + is normalised such that j d7 ( /$+(7 ) /2+  
I$-(7)I2) =jdp/+(p)12= IIi,fI12. We shall show that th,e functions R;, , , , (v)  stay 
uniformly bounded and converge pointwise to a limit K,, , 7) as E + 0. Hence Z' 
converges to a limit, which is a bounded quadratic form in +, i.e. I = (+, As$) for a 
unique bounded operator As. 

For diagonalising As it suffices to diagonalise for each 7 E R the Hermitian 2 x 2 
matrix k(7).  As is thus unitary equivalent to a direct sum of the two multiplic!tion 
operators on Q2(IW,  d 7 )  multiplying with the eigenvalues A,(7)  of the matrix K ( 7 ) .  
For determining A+(7) we need to calculate the Fourier transforms k:l,u2. In the 
Fourier integral for K:- the limit E + 0 can be carried out under the integral sign. The 
limit can be expressed by a 9 function of Euler and is thus not an elementary function 
of 7. k:+ can be evaluated by means of the residue theorem using the periodicity 
KS+(A f i r )  = -KS+(A) .  For this one considers a path along the real axis and back 
along the line Im A = n-. The result is 

A 

R++(v)=( l+e -Tv) - '  K--( 7) = 0 

1 - 
= K - + ( 7 )  JOE cosh A 

k+-(v) =z dh eiAq - 
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It is clear that A-( 7 )  is negative and A+( 7 )  is positive for all 7. As 7 + + 00 k++ tends 
to 1 exponentially, whereas z+-( 7 )  tends to zero only like 7-l. Hence A+( 7 )  2 1 for 
sufficiently large 7. The values -s- = min, A-( 7) and s+ = max, A+( 7 )  given in the 
proposition are calculated numerically. 

The case of double sectors is completely analogous. The operator A-s belonging 
to the sector -S = { ( p ,  q ) l p  s 0, q s 0} is obtained from As by exchanging the signs of 
momenta, Thus As + A-s  is the operator of multiplication with the matrix 

with eigenvalues 

Again s = max, A+( 7 )  is determined numerically. Proposition 2 is proved. 

By this proposition the quasiprobability for sectors may be defined as Tr(DA,) even 
if the Wigner function p ( D ;  * ,  a )  is not integrable, and the integral 
j (p ,q)ESdp d q p ( D ; p ,  q )  makes no sense as it stands. One might try to extend this 
procedure to the definition of quasiprobabilities for more general sets S, = 
{( p ,  q)1- q / p  E M }  for Bore1 sets M c R. Clearly, this procedure works for finite unions 
of sectors. However, the following proposition shows that, as the number of sectors 
in a disjoint union increases, the total negative quasiprobability may diverge so that 
there is no hope for defining the quasiprobability for general sets SM and all density 
matrices D. 

Proposition 3. There is a unit vector $ E 6 with the following property: for any R E R, 
0 < R < there is a family of disjoint sectors S, ( v  = 1, . . . , n )  in phase space such that 

PvooJ Consider the family U of operators of the form Z:=, As, for finite disjoint 
collections of sectors S, .  Suppose to the contrary that for all unit vectors $ the set of 
numbers {($, A$)IA E U} is bounded below. Then it is also bounded above, since for 
each collection { S , }  there is a complementary collection {S: }  with As, +AsL= U. 
Hence by the uniform boundedness theorem [13] there is a constant C such that 
llAl1 s C for all A E U. Thus the proposition is proven by contradiction if we exhibit 
a sequence +k of Knit vectors and a sequence Ak E U such that ( $ k ,  Ak+k)+ --CO. 

= (1/42)(10)+ l k ) ) ,  where In) denotes the nth eigenstate of the oscillator. 
Then po(l$k)($kl ;  a)=: p ( a )  = ~ ( n Z o o + ~ k k + e i k a n O k + e - i k a ~ k O )  = l+l!20kl cos[k(a - 
$7)] with nok = ik/Rokl from lemma 1. We shall see below that I Q o k /  2 1 for large k, 
so p is negative on k disjoint intervals [a,, p y ] .  On each of these intervals we have 
jEl d a  p ( a )  = - k - '  j't da(lRokI cosa - 1) = -2k- ' ( lnokl  siny-  7 ) s  -2k- ' ( / f lok12-  
1)''2+ k-'.rr with y = cos-'(~flokl-') < 77/2. Let S,, v = 1, . . . , k, denote the correspond- 
ing sectors in phase space. Then 

Let 

d a p ( a ) S  -2 (1Cl ,3k /2-1)1 '2+~TT.  
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It remains to be shown that IRokI is unbounded. From lemma 1 we have 
lRokj = 2k/Zr( ik+ l)(k!)-’/’. Evaluating this with Stirling’s formula we obtain 
h(lfi,kl)=$ln(k?T/2)+O(k-’). 

5. Covariant observables 

In this section we briefly describe how the negative probabilities of the Wigner 
quantisation of arrival time and oscillator phase can be avoided. A positive quantisation 
rule must assign to each density matrix D a suitable probability measure p D  on some 
parameter space, which is equal to U2 for arrival times and equal to the circle S’ for 
the oscillator phase. We require in addition that mixtures ADl + (1 - A)D2 ( A  E [0, 11) 
of density matrices are mapped to the corresponding mixtures of probability measures. 
Hence for any Bore1 set a the assignment D - p D ( a )  is a positive affine functional 
on the set of density matrices, which implies the existence of a positive bounded 
operator F ( a )  with pD(a )=Tr [D.F(a ) ] .  Since each p D ( . )  is supposed to be a 
probability measure, the set function a * F ( a )  is a measure with values in the positive 
operators on Hilbert space, satisfying the normalisation condition F ( R )  = 1 (respectively 
F ( S ’ )  =U). In the following we shall use the term ‘observable’ [14, 151 for such 
measures. We do not require each operator F ( a )  to be a projection, since this condition 
is not necessary for a statistical interpretation and is too restrictive for the constructions 
below. 

We shall demand of an arrival time observable that it transforms correctly under 
the time translations. By this we mean that preparing the system earlier results in a 
shift of the arrival time distributions given by the observable, i.e. Tr( U,DUTF(a))  = 
Tr(D. F ( a +  t ) ) .  Since this equation must hold for all states 0, we have U , F ( a )  UT = 
F ( a +  t ) .  This covariance property was also noted for the Wigner quantisation of 
arrival time after (6). For a quantisation of the oscillator phase we shall impose the 
analogous condition U,F(a)  U: = F ( a +  C Y )  where the shift a-a+ CY is to be under- 
stood mod 2 ~ .  

There is a well developed theory of observables satisfying a covariance condition 
of this kind [16, 171. It is based on a dilation construction by Naimark [18], which 
reduces the problem of constructing all covariant observables to finding only the 
projection valued covariant observables. These in turn have been thoroughly studied 
by Mackey under the name of ‘systems of imprimitivity’ [ 191. In the two cases at hand 
one gets a complete classification of covariant observables by combining these two ideas. 

The result of this analysis is the following: all covariant arrival time observables 
are given by the following analogue of (6): 

P A D ;  f )  = ( 2 7 r - ’  1 dp, dp, k(p, ,p,)  exP[~it(p:-p:)lD(pI,p*) (11) 

where the kernel # p ,  + p 2 (  is replaced by a positive-definite kernel k( p l  , p 2 )  satisfying 
the normalisation condition k(p, p)  = / P I .  The simplest example of this kind is the 
replacement of the arithmetic mean tipl +p2J by the geometric mean lplp2/”2. We shall 
see below that this choice is even canonical in a sense to be specified. Similarly, all 
covariant observables for the oscillator phase are given by (9) where R is any positive- 
definite matrix satisfying the normalisation condition R,, = 1. An example in this case 
is the choice R,, = 1 for all n, m E N. 
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Thus there are infinitely many covariant observables for arrival time and oscillator 
phase. An analogous phenomenon is well known from quantisation rules in phase 
space: there are very many observables jointly measuring position and momentum in 
the sense that they are covariant with respect to phase space translations [7, proposition 
3.31. (However, none of them shares the extremely high symmetry ( 5 )  of the Wigner 
function.) This non-uniqueness of arrival time observables is physically quite reason- 
able since there are many different kinds of counters. So the choice of a particular 
arrival time observable will depend on the detailed description of the counter [19]. 
On the other hand, one may try to find observables for ‘optimal’ measurements of 
arrival time, which are more ‘canonical’. 

One criterion that can be used for this purpose is based on the observation that 
some of the covariant observables are very ‘smeared out’. For example, choosing 
O,,, = a,,, in (9) assigns the uniform distribution to every density matrix. Therefore 
a good criterion should force the observable to be as sharp as possible under the 
constraint of covariance. One criterion of this kind has been introduced in [16]: for 
any observable F, any measurable function f on the parameter space of F, and any CC, 
in Hilbert space, we have the inequality: 

This expression, called the variance form of F with respect to J ;  measures the intrinsic 
uncertainties associated with the observable F. It vanishes for projection valued 
observables F, but its vanishing on a dense domain for certain unbounded functions 
f does not imply that the observable is projection valued. We say that an observable 
has minimal variance in a certain class of observables, if for no other observable the 
variance form is smaller in all states. Those phase space observables for which the 
variances with respect to the coordinate functions p and q become minimal are precisely 
the observables formed with coherent states [16, 211. In the case of arrival time 
observables the minimal variance condition, together with some symmetry requirements 
for reflections, which are necessary for distinguishing arrival at the origin from arrival 
at some other place, single out the arrival time observable with kernel lplp211’2. The 
proof is entirely analogous to the proof given in [16] for an analogue in three space 
dimensions. It turns out that for this observable the variance form is zero on its natural 
domain. 

For the case of phase observables for the oscillator it is natural to demand that the 
variance with respect to the function ein be minimal, i.e. that 

cannot be decreased for all states CC, simultaneously by choosing another E By using 
Naimark’s construction [18] one can show that this condition implies that a,,, = 
exp(iy, - iym) for real numbers y n .  Imposing covariance with respect to antiunitary 
time inversion forces y,, to be a multiple of v, so R,, = +1. Thus we arrive at a discrete 
set of phase observables, among which the choice R,, = 1 appears to be distinguished. 

All positive phase space observables can be obtained by averaging the Wigner 
function with suitable integrable functions [7]. Thus it is natural to ask whether the 
convolution of the densities p T  and pa with suitable integrable functions can be one 
of the positive observables discussed in this section. At least for arrival time observables 
it is easy to see that this is not, the case: the convolution of an observable specified by 
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a kernel k (or the Wigner arrival time distribution) with an  integrable function 6 give: 
another covariant observable with kernelA i(  p ,  , p z )  = &( p :  - p : ) ) k (  p ,  , p J ,  ?here 5 
denotes the Fourier transform of 5 with t ( 0 )  = 1. We claim that the kernel t ( $ ( p : -  
p : ) ) f (  p1 + p J  is not positive definite for any 5. For if it were positive, we should have 
for every p l , y p r :  [ 5 * ( l ( p : - p : ) ) t ( p , + p z ) ] * ~ p 1 p z .  In the limit pz+O with constant p1 
this implies [ ( l p : )  = 0 for all p , ,  i.e. 5 = 0, which is the claimed contradiction. 
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